Question

The solution of the differential equationdydx=exyis

  1. ex+ey+k=0
  2. e2x=key
  3. exey=k
  4. ex+y=k

Answer: exey=k

Solution :-

We havedydx=exy

Now, use separation of variable method, we get

dydx=exeyeydy=exdx(1)

Integrating both sides of eq(1), we get

eydy=exdxey=ex+k1exey=k1exey=k(where,k=k1)

So, correct answer is option-3, exey=k