Question

For a positive integer n, let U(n)={r¯Zn:gcd(r,n)=1} be the group under multiplication modulo n. Then, which one of the following statements is TRUE?

  1. 𝑈(5) is isomorphic to 𝑈(8)
  2. 𝑈(10) is isomorphic to 𝑈(12)
  3. 𝑈(8) is isomorphic to 𝑈(10)
  4. 𝑈(8) is isomorphic to 𝑈(12)

Answer: 𝑈(8) is isomorphic to 𝑈(12)

Solution :-

isomorphic Symbol →
not isomorphic Symbol → \cancel{\approx}

Option (1)

U(5)Z51Z4,and U(8)=U(23)Z2×Z232Z2×Z2

Since, Z4    Z2×Z2Z_4\; \cancel{\approx}\; Z_2\times Z_2
Hence, U(5)    U(8)U(5)\; \cancel{\approx}\; U(8)\cdot
So, option (1) is wrong.

Option (2)

U(10)=U(2×5)U(2)×U(5)Z1×Z51Z1×Z4,and U(12)=U(3×4)U(3)×U(4)Z2×Z2

Since, Z1×Z4    Z2×Z2Z_1\times Z_4\; \cancel{\approx}\; Z_2\times Z_2
Hence, U(10)    U(12)U(10)\; \cancel{\approx}\; U(12)\cdot
So, option (2) is also wrong.

Option (3)

U(8)=U(23)Z2×Z232Z2×Z2,and U(10)=U(2×5)U(2)×U(5)Z1×Z51Z1×Z4

Since, Z2×Z2    Z1×Z4Z_2\times Z_2\; \cancel{\approx}\; Z_1\times Z_4
Hence, U(8)    U(10)U(8)\; \cancel{\approx}\; U(10)\cdot
So, option (3) is also wrong.

Option (4)

U(8)=U(23)Z2×Z232Z2×Z2,and U(12)=U(3×4)U(3)×U(4)Z2×Z2

Since, Z2×Z2Z2×Z2
Hence, U(10)U(12)
So, option (4) is correct.

So, the correct answer is option-4, 𝑈(8) is isomorphic to 𝑈(12)