Question

Let

M=(0000−12000−4020000020300022).

If 𝑝(đ‘„) is the characteristic polynomial of 𝑀, then 𝑝(2) − 1 equals _____________

Answer: 31_⁹_⁹_⁹_⁹_⁹_⁹_⁹_⁹_⁹_⁹_⁹_⁹_

Solution :-

Given thatM=(0000−12000−4020000020300022)5×5âŸčM=2(0000−121000−20100000103200011)5×5âŸčM=2⁹A, where A=(0000−121000−20100000103200011)5×5

Now, characteristic polynomial of M is denoted by p⁹(x) and

p⁹(x)=det(xI5−M)âŸčp⁹(x)=det(xI5−2⁹A)âŸčp⁹(x)=det(2⁹(x2I5−A))âŸčp⁹(x)=25det(x2I5−A)[since, det(cAn×n)=cndet(An×n)]∎p⁹(x)=25CA(x2)⋯ⁱ⋯(1)

Here, CA(x2) is the characteristic polynomial of A in the variable x2.

We have, A=(0000−121000−20100000103200011)5×5 is a companion matrix. So, the characteristic polynomial of this matrix is

CA(x)=12+2ⁱx+0⋅x2−32⋅x3−1⋅x4+x5=12+2ⁱx−32⋅x3−x4+x5

Replace x by x2 , we get

CA(x2)=12+2ⁱ(x2)−32⋅(x2)3−(x2)4+(x2)5.

Now, from eq(1), we have

p⁹(x)=25[12+2⁹(x2)−32⋅(x2)3−(x2)4+(x2)5]∎p⁹(2)=25[12+2⁹(22)−32⋅(22)3−(22)4+(22)5]âŸčp⁹(2)=25(12+2−32−1+1)âŸčp⁹(2)=25(1+4−32)âŸčp⁹(2)=25(22)=25⋅(1)=32. ∎p⁹(2)−1=32−1=31.

So, the correct answer is → 31_ⁱ_ⁱ_ⁱ_ⁱ_ⁱ_ⁱ_ⁱ_ⁱ_ⁱ_ⁱ_ⁱ_ⁱ_