Question

Let F be the family of curves given by

x2+2hxy+y2=1,1<h<1.

Then, the differential equation for the family of orthogonal trajectories to F is

  1. (x2yy3+y)dydx(xy2x3+x)=0
  2. (x2yy3+y)dydx+(xy2x3+x)=0
  3. (x2y+y3+y)dydx(xy2+x3+x)=0
  4. (x2y+y3+y)dydx+(xy2+x3+x)=0

Answer: (x2yy3+y)dydx(xy2x3+x)=0

Solution :-

We have, given faimly of curves

x2+2hxy+y2=1(1)

Differentiating eq(1) w. r. to x , we get

2x+2hy+2hxdydx+2ydydx=0x+hy+hxdydx+ydydx=0(2)

Now, from eq(1), we have

x2+2hxy+y2=12hxy=1x2y2h=1x2y22xy

Now, put the value of h in eq(2), we have

x+1x2y22xyy+1x2y22xyxdydx+ydydx=0x+1x2y22x+1x2y22ydydx+ydydx=02x2+1x2y22x+1x2y2+2y22ydydx=0y2x2+1ydydx=x2y2+1x(xy2x3+x)dydx=(x2yy3+y)(3)

Now, replace dydx by dxdy in eq(3), we get

(xy2x3+x)(dxdy)=(x2yy3+y)(xy2x3+x)dxdy=(x2yy3+y)dxdy=(x2yy3+y)(xy2x3+x)dydx=(xy2x3+x)(x2yy3+y)(taking reciprocal of both sides)(x2yy3+y)dydx=(xy2x3+x)(x2yy3+y)dydx(xy2x3+x)=0

So, correct answer is option-1, (x2yy3+y)dydx(xy2x3+x)=0