Question

Let

S={f::fis polynomial andf(f(x))=(f(x))2024forx}.

Then, the number of elements in S is _____________

Answer: 3_____________

Solution :-

Let f(x)=a0+a1x+a2x2++a2024x2024+ , where all ai,i{0} is a general polynomial.

Now, f(f(x))=f(a0+a1x+a2x2++a2024x2024+)f(f(x))=a0+a1(a0+a1x+a2x2+)+a2(a0+a1x+a2x2+)2++a2024(a0+a1x+a2x2+)2024+ Also, (f(x))2024=(a0+a1x+a2x2++a2024x2024+)2024

Now, f(f(x))=(f(x))2024 forall x ony if


Case(I) : all ais are zero

i.e.,a0=a1=a2==a2024==0 i.e.,f(x)=0

Case(II) : a0=1 and all ais are 0, where i

i.e.,a0=1anda1=a2==a2024==0 i.e.,f(x)=1

Case(III) : a2024=1 and all ais are 0, where i{0}{2024}

i.e.,a2024=1anda0=a1=a2==a2023=a2025==0 i.e.,f(x)=x2024

So, S contains only three polynomials : f(x)=0,f(x)=1 , and f(x)=x2024.
Hence, the number of elements in S is 3.

So, the correct answer is 3_____________