Question

Consider the 4 × 4 matrix

M=(0123101221013210).

If ai,j denotes the (i,j)th entry of M1 , then a4,1 equals _____________ (rounded
off to two decimal places).

Answer: 0.17_____________

Solution :-

We know that M1=adj(M)det(M).
So, the entry a4,1 in M-1 is equal to a4,1det(M) , where a4,1 is the entry of adj(M).

And, entry a4,1 in adj(M) = cofactor of entry a1,4 in M.

Hence, a4,1=cofactor of a1,4in Mdet(M).

Now, cofactor of entry a1,4 in M = (1)1+4|101210321|=2.

And, det(M)=|0123101221013210|=1|112201310|2|102211320|3|101210321|=1(6)2(0)3(2)=12. a4,1=cofactor of a1,4in Mdet(M)=212=160.16666

Rounded off to two decimal places of 0.16666 = 0.17

So, the correct answer is 0.17_____________