Question

Let 𝑩: ℝ → ℝ be the solution to the differential equation

d2ydx2+2dydx+5y=1

satisfying 𝑩(0) = 0 and 𝑩â€Č(0) = 1.
Then, limx→y(x) equals _____________ (rounded off to two decimal places).

Answer: 0.20_____________

Solution :-

Given that d2ydx2+2dydx+5y=1 this is a 2nd order linear differential equation with constant cofficient and we know that general solution of heigher order linear differential equation is y=C.F.(complementary function)+P.I.(particular integral).

We can write d2ydx2+2dydx+5y=1 as d2ydx2+2dydx+5y=e0⋅x.

Auxiliary Equation of given differential equation is

D2+2D+5=0âŸčD=−2±22−4⋅1⋅52⋅1âŸčD=−2±4−202âŸčD=−2±âˆ’162âŸčD=−2±(4i)22âŸčD=−2±4i2∎D=−1±2i

Roots of Auxiliary equation is complex.
Hence, C.F.=e−x(c1cos2x+c2sin2x)

Now, P.I.=1F(D)⋅Q(x) here F(D)=D2+2D+5 and Q(x)=e0⋅x.

∮P.I.=1D2+2D+5⋅e0⋅x=102+2⋅0+5⋅e0⋅x=15.

So, the general solution is y(x)=C.F.+P.I.=e−x(c1cos2x+c2sin2x)+15.

Now, given that y(0)=0 , hence from the general solution we get

0=e−0(c1cos(2⋅0)+c2sin(2⋅0))+15âŸč0=c1+15∎c1=−15.

Now, given that yâ€Č(0)=1 , hence from the general solution we get

yâ€Č(x)=−e−x(c1cos2x+c2sin2x)+e−x(c1(−2sin2x)+c22cos2x)âŸč1=−e−0(c1cos(2⋅0)+c2sin(2⋅0))+e−0(c1(−2sin(2⋅0))+c2⋅2cos(2⋅0))âŸč1=−c1+2c2âŸč1=−(−15)+2c2âŸč1−15=2c2âŸč45=2c2∎c2=25.

Now, put the value of c1 and c2 in the general solution we get final solution as

y(x)=e−x(−15cos2x+25sin2x)+15limx→y(x)=limx→[e−x(−15cos2x+25sin2x)+15]=limx→[−15cos2x+25sin2xex]+15 Since,−1≀cos(2x)≀1x∈ℝ15≄−15cos(2x)≄−15x∈ℝ∮−15cos(2x)∈[−15,15]x∈ℝ Also,−1≀sin(2x)≀1x∈ℝ−25≀25sin(2x)≀25x∈ℝ∮25sin(2x)∈[−25,25]x∈ℝ Hence, −15+(−25)<−15cos2x+25sin2x<15+25x∈ℝ−35<−15cos2x+25sin2x<35x∈ℝ

So, if x→ then −15cos2x+25sin2x∈(−35,35) but ex→.

∎limx→[−15cos2x+25sin2xex]=0(∔limx→bounded=0) Hence, limx→y(x)=0+15=15=0.20.

So, the correct answer is → 0.20_____________

Graph of function as x goes to infinity
Graph of function as x goes to infinity