Question

The area of the region

R={(x,y)2:0x1,0y1and14xy12}

is _____________ (rounded off to two decimal places).

Answer: 0.25_____________

Solution :-

Set R is the collection of all those points which are in intersection of three regions given below

Region(1)0x1x0andx1Region(2)0y1y0andy1Region(3)14xy12y14xandy12x

For Region(3) :

if x=1 then 14y12 and if y=1 then 14x12

if x=14 then y=1 and if y=14 then x=1

if x=12 then 12y1 and if y=12 then 12x1

Therefore, if x[14,12] then y[14x,1] and if x[12,1] then y[14x,12x]

Hence, intersection points of those three regions are (1,14),(1,12),(14,1),(12,1),(12,12).

Image for the area of the region R
Image for the area of the region R

Now, the area of the region

R=141214x1dydx+12114x12xdydx=1412[y]14x1dx+121[y]14x12xdx=1412(114x)dx+121(12x14x)dx=[x14logx]1412+12114xdx=[(1214log12)(1414log14)]+[14logx]121=[1214log1214+14log14]+[14log114log12]=[1424log12+14log(12)2+0](log1=0)=1412log12+142log12(log(x)n=nlogx)=1412log12+12log12=14=0.25.

Hence, The area of the region R, rounded off to two decimal places is 0.25.

So, the correct answer is 0.25_____________