Question

Let y(x) be the solution of the differential equation

dydx=1+ysecx,forx(π2,π2)

that satisfies y(0)=0 . Then, the value of y(π6) equals

  1. 3log(32)
  2. (32)log(32)
  3. (32)log3
  4. 3log3

Answer: 3log(32)

Solution :-

We have,

dydx=1+ysecxdydxysecx=1

This is a 1st order 1st degree linear differential equation.
Hence, we solve this differential equation by the method of 1st order 1st degree linear differential equation.

So, dydx+(secx)y=1

I.F.=e(secx)dx=elog(secx+tanx)=elog(secx+tanx)1=1secx+tanx=cosx1+sinx

So, the solution is

ycosx1+sinx=1cosx1+sinxdxycosx1+sinx=cosx1+sinxdx(1)

Now, let 1+sinx=t , then differentiating w. r. to x , we get

d(1+sinx)dx=dtdxcosx=dtdxcosxdx=dt

Now, put cosxdx=dtand1+sinx=t in eq(1), we get

ycosx1+sinx=1tdtycosx1+sinx=logt+cycosx1+sinx=log(1+sinx)+c(2)(1+sinx=t)

Now, given that y(0)=0 , So from eq(2), we have

0cos01+sin0=log(1+sin0)+c0=log(1+0)+c0=0+cc=0

Put c = 0 in eq(2), we get

ycosx1+sinx=log(1+sinx)+0y=1+sinxcosxlog(1+sinx)Now,y(π6)=1+sinπ6cosπ6log(1+sinπ6)=1+1232log(1+12)=3232log(32)=3log(32)

So, correct answer is option-1, 3log(32)