Question

For p,q,r,r0 and n , let

an=pnnq(nn+2)n2 and bn=nnn!rn(n+2n).

Then, which one of the following statements is TRUE?

  1. If1<p<e2andq>1,thenn=1an is convergent
  2. Ife2<p<e4andq>1,thenn=1an is convergent
  3. If1<r<e,thenn=1bn is convergent
  4. If1e<r<1,thenn=1bn is convergent

Answer: If1<p<e2andq>1,thenn=1an is convergent

Solution :-

We have an=pnnq(nn+2)n2. So,

n=1an=n=1pnnq(nn+2)n2=n=1nq(nn+2)n2pn

Here, Series n=1an is the power Series in variable p.

Now, assume cn=nq(nn+2)n2. Hence,

L=limnsupcn1n=limnsup|nq(nn+2)n2|1n=limnsup|(nq)1n(nn+2)n|.

We know that limn(nq)1n=1,q+ and

limn(nn+2)n=limn(n+22n+2)n=limn(12n+2)n=e2.

Therefore, L=limnsup1e2=e2.

Now, the radius of convergence of the Series n=1an is

R=1L=1e2=e2.

Hence, Interval of convergence for p of the Series n=1an is

p<Rp<e2e2<p<e2.

Hence, the Series n=1an is also converges if 1<p<e2.

So, the option (1) is correct and option (2) is wrong.


Now, We have bn=nnn!rn(n+2n). So,

n=1bn=n=1nnn!rn(n+2n).
bn+1=(n+1)n+1(n+1)!rn+1(n+3n+1)=(n+1)n(n+1)(n+1)n!rnr(n+3n+1)=(n+1)nn!rnr(n+3n+1).

Apply the Ratio Test, we get

limnbn+1bn=limn((n+1)nn!rnr(n+3n+1)nnn!rn(n+2n))=limn((1+1n)n1rn+3n+1×nn+2)=er.

Therefore, the Series n=1bn converges only if

er<1re>1r>e.

Hence, option (3) and (4) are also wrong.

So, the correct answer is option-1. If1<p<e2andq>1,thenn=1an is convergent