Question

Let yc:R(0,) be the solution of the Bernoulli’s equation

dydxy+y3=0,y(0)=c>0

Then, for every c>0 , which one of the following is true?

  1. limxyc(x)=0
  2. limxyc(x)=1
  3. limxyc(x)=e
  4. limxyc(x)does not exist

Answer: limxyc(x)=1

Solution :-

Lets first find solution of given Bernoulli’s equation.

We have,

dydxy+y3=0dydxy=y31y3dydxyy3=y3y3(dividing both sides withy3)y3dydx+y2=1(1)

Now, let y2=t , Then differentiate w. r. to x , we get

2y3dydx=dtdxy3dydx=12dtdx

from (1), we get

12dtdx+t=1dtdx+2t=2

Now, I.F. = e2dx=e2x
So, the solution is

te2x=2e2xdxy2e2x=2e2x2+ke2xy2=e2x+k(2)

Now, given that y(0)=c>0

So,e20c2=e20+k1c2=1+kk=1c21

Now, put the value of k in eq(2), we get

e2xy2=e2x+1c211y2=1+(1c21)1e2x(dividing both sides withe2x)y2=11+(1c21)1e2xy=11+(1c21)1e2x(yc:R(0,))

Now, we know that if x then all of these 1x,1ex,ce2x and so on goes to zero.

Hence, term (1c21)1e2x become zero when x , given c > 0.

So, limxyc(x)=11+0=11=1

Below, you can see the graph of y=11+(1c21)1e2xasxandc>0.

So, correct answer is option-2, limxyc(x)=1