Question

For n , let

an=1(3n+2)(3n+4)andbn=n3+cos(3n)3n+n3

Then, which one of the following is TRUE?

  1. n=1anis convergent butn=1bnis divergent
  2. n=1anis divergent butn=1bnis convergent
  3. Bothn=1anandn=1bnare divergent
  4. Bothn=1anandn=1bnare convergent

Answer: Bothn=1anandn=1bnare convergent

Solution :-

Given that an=1(3n+2)(3n+4) , let cn=1n2 .

Now,ancn=1(3n+2)(3n+4)1n2=n2(3n+2)(3n+4)=n2n2(3+2n)(3+4n)=1(3+2n)(3+4n) ancn=1(3+2n)(3+4n). Now,limnancn=limn1(3+2n)(3+4n)=1(3+0)(3+0)=19,(which is finite and non-zero.)

So, By comparison test (limit form test), both n=1an and n=1cn behave alike.
But n=1cn=n=11n2 is convergent by p-series test.

Hence, n=1an is also convergent.


Now, Given that bn=n3+cos(3n)3n+n3 .

We know that

cos(3n)1nor,n3+cos(3n)n3+1or,n3+cos(3n)3n+n3n3+13n+n3n3+13n(because3n+n3>3n)

Now, let kn=n3+13n so, kn+1=(n+1)3+13n+1 .

knkn+1=n3+13n(n+1)3+13n+1=n3+13n×3n+1(n+1)3+1=n3(1+1n3)3n×3n3n3[(1+1n)3+1n3]=3(1+1n3)[(1+1n)3+1n3]. knkn+1=3(1+1n3)[(1+1n)3+1n3]. Now,limnknkn+1=limn3(1+1n3)[(1+1n)3+1n3]=3(1+0)[(1+0)3+0]=3,(which is greater than 1.)

So, By D’Alembert’s Ratio test, n=1kn is convergent.

And hence, By comparison test n=1bn=n=1n3+cos(3n)3n+n3 is convergent.


So, the correct answer is option-(D), Bothn=1anandn=1bnare convergent