Question Ifa⃗=i⃗+j⃗+3k⃗;b⃗=2i⃗+3j⃗−5k⃗thena⃗⋅b⃗= 10 -10 20 5 Answer: -10 Solution :- We have a⃗=i⃗+j⃗+3k⃗andb⃗=2i⃗+3j⃗−5k⃗ then, a⃗⋅b⃗=(i⃗+j⃗+3k⃗)⋅(2i⃗+3j⃗−5k⃗)=i⃗⋅(2i⃗+3j⃗−5k⃗)+j⃗⋅(2i⃗+3j⃗−5k⃗)+3k⃗⋅(2i⃗+3j⃗−5k⃗)=2(i⃗⋅i⃗)+3(i⃗⋅j⃗)−5(i⃗⋅k⃗)+2(j⃗⋅i⃗)+3(j⃗⋅j⃗)−5(j⃗⋅k⃗)+6(k⃗⋅i⃗)+9(k⃗⋅j⃗)−15(k⃗⋅k⃗)=2⋅1+3⋅0−5⋅0+2⋅0+3⋅1−5⋅0+6⋅0+9⋅0−15⋅1=2+3−15=−10⋅ ∵i⃗⋅i⃗=j⃗⋅j⃗=k⃗⋅k⃗=1and i⃗⋅j⃗=j⃗⋅k⃗=k⃗⋅i⃗=0 also, the scalar product is commutative. So, correct answer is option-2, →−10 #Vector Algebra #BSEB PYQ 2017 #Mathematics #BSEB PYQs