Question ddx(tanax) = atanax asec2ax asecx acotax Answer: asec2ax Solution :- ddx(tanax)=d(tan(ax))d(ax)×d(ax)dx=sec2(ax)×d(ax)dx (∵derivative oftanxis sec2x)=sec2(ax)×a×d(x)dx(∵’a’ is constant)=sec2(ax)×a×1=asec2(ax)⋅ So, correct answer is option-2, →asec2ax #Differentiation #BSEB PYQ 2017 #Mathematics #BSEB PYQs