Question

ddx(sin1x)=

  1. 11+x2
  2. 11x2
  3. 11x2
  4. 11+x2

Answer: 11x2

Solution :-

Letsin1x=yx=siny(1)

Now, Differentiate with respect to x, we get

d(siny)dx=d(x)dxd(siny)dyd(y)dx=1cosydydx=1(d(sinx)dx=cosx)dydx=1cosydydx=11sin2ydydx=11x2(siny=xfrom eq(1))d(sin1x)dx=11x2

So, correct answer is option-3, 11x2