Question ddx(secx) = sec2x tan2x secxtanx 0 Answer: secxtanx Solution :- Letf(x)=secx,thendf(x)dx=limh→0f(x+h)−f(x)h=limh→0sec(x+h)−secxh=limh→01cos(x+h)−1cosxh(∵secx=1cosx)=limh→0cos(x)−cos(x+h)cos(x+h)cosxh=limh→02sin(x+x+h2)sin(x+h−x2)hcos(x+h)cosx(∵cosC−cosD=2sin(C+D2)sin(D−C2))=limh→02sin(2x+h2)sin(h2)hcos(x+h)cosx=limh→0sin(x+h2)cos(x+h)cosx⋅sin(h2)h2=limh→0sin(x+h2)cos(x+h)cosx⋅1(∵limx→0sinxx=1)=sin(x+02)cos(x+0)cosx=sin(x+0)cosxcosx=1cosx⋅sinxcosx=secxtanx⋅ So, correct answer is option-3, →secxtanx #Differentiation #BSEB PYQ 2017 #Mathematics #BSEB PYQs