Question

ddx(secx) =

  1. sec2x
  2. tan2x
  3. secxtanx
  4. 0

Answer: secxtanx

Solution :-

Letf(x)=secx,thendf(x)dx=limh0f(x+h)f(x)h=limh0sec(x+h)secxh=limh01cos(x+h)1cosxh(secx=1cosx)=limh0cos(x)cos(x+h)cos(x+h)cosxh=limh02sin(x+x+h2)sin(x+hx2)hcos(x+h)cosx(cosCcosD=2sin(C+D2)sin(DC2))=limh02sin(2x+h2)sin(h2)hcos(x+h)cosx=limh0sin(x+h2)cos(x+h)cosxsin(h2)h2=limh0sin(x+h2)cos(x+h)cosx1(limx0sinxx=1)=sin(x+02)cos(x+0)cosx=sin(x+0)cosxcosx=1cosxsinxcosx=secxtanx

So, correct answer is option-3, secxtanx